為探究材料的電氣介電擊穿強度隨填料填充含量的變化規律,本論文將使用硅烷偶聯劑處理過的70N,m, S},m和1.SN.m球形氧化鋁按照6:2:2的質量比進行混合,構成高導熱填料體系,再將其添加到硅橡膠基體中,制備出不同填料添加含量下的熱界面復合材料樣品,該樣品呈圓形,其直徑為100mm、厚度為2mm,如圖1所示。實物連接圖如圖2所示。實驗過程中需將待測的熱界面復合材料、電極等浸泡在二甲基硅油中,以進一步抑制表面閃絡的發生,減小實驗誤差。實驗采用的測試標準為ASTM D149。
圖1 樣品圖
圖2 擊穿試驗實物連接圖
不同填料含量下的材料的交流電氣介電擊穿強度值如表1所示,變化趨勢如圖3所示。擊穿后的復合材料樣品如圖4所示,樣品上的黑色斑跡為擊穿點。由圖3可看出,復合材料的電氣介電擊穿強度隨著填料填充含量的增大而下降。由表1可知:純硅膠的電氣介電擊穿強度最大,為15.21kV/mm;填料的填充含量為70%時,電氣介電擊穿強度為13.89kV/mm,其值相比純硅膠下降了8.7%;填料的填充含量為85%時,電氣介電擊穿強度為11.OlkV/mm,其值相比純硅膠下降了27.6%;填料的填充含量達到95%時,電氣介電擊穿強度為8.58kV/mm,其值相比純硅膠下降了43.6%。
表1不同粒徑填充下材料交流電氣介電擊穿強度
圖3不同填充含量下材料交流電氣介電擊穿強度變化趨勢
根據研究發現,可以按照以下模型思想對材料的電氣介電擊穿強度進行分析:填充型材料的多殼模型由緊密層、連接層、松散層和古依一查普曼雙電層四個層次構成。其中緊密層為連接小顆粒無機填料和有機基體的部分;連接層可通過移動有機聚合物鏈影響固化后復合材料的分子結構;松散層的移動性強,與聚合物距離最遠,受緊密層的影響最小;古依一查普曼雙電層覆蓋在以上三層之上。兩個不同的物體相互接觸時,由于其自由電子荷的濃度不同,在接觸界面便會產生接觸電勢,兩物體會產生電量相等、極性相反的電荷。在各種力場和熱擴散的共同作用下電荷最終達到穩態且該電層在緊密層、連接層、松散層這三層之外。
硅橡膠分子鏈上本身的缺陷會導致純硅膠的電氣介電擊穿強度低于理想值。在硅橡膠中加入微米級無機填料,基體粘度增高,高導熱填料體系在基體中分散性變差,制得的復合材料會出現內部存在氣孔、裂紋、表面不平整等現象,從而引入除硅橡膠本身分子鏈缺陷以外更多的缺陷,導致復合材料的電氣介電擊穿強度變低。另外,由于微米級無機填料的引入可導致更多的起始電子,而起始電子移動容易,伴隨電子之間的撞擊,產生更多的電子,從而降低了電氣介電擊穿強度。因此,復合材料的電氣介電擊穿強度隨著填料含量的增大而減小。
為探究單一粒徑填充下,材料電氣介電擊穿強度隨氧化鋁粒徑的變化規律,分別將使用偶聯劑處理過的70N,m, 20um和0.5um球形氧化鋁填充到硅橡膠基體中,制得復合材料樣品,其填料的填充含量均為77%。在相同的實驗環境下測量不同樣品的擊穿電壓,復合材料交流擊穿場強的變化趨勢如圖5所示。
圖5不同粒徑填充下材料的交流電氣介電擊穿強度
由圖可知,復合材料的電氣介電擊穿強度隨著填料粒徑的增大而增大。氧化鋁粒徑為70um時,電氣介電擊穿強度最大,為11.07kV/mm氧化鋁粒徑為20um時,電氣介電擊穿強度為10.48kV/mm,其值相比粒徑為70um時下降了5.3%}氧化鋁粒徑為O.Sum時,電氣介電擊穿強度為10.21kV/mm,其值相比粒徑為70um時降了7.7% 。
在相同填充含量下,填料的粒徑越小,其分子顆粒數越多,無機填料與基體間的接觸面積越大,粒子越不容易在基體中均勻分散,容易形成較多的氣隙等缺陷,而擊穿往往在這些比較脆弱的地方首先放生,導致擊穿場強變小。因此,單一粒徑填充下,復合材料的擊穿場強隨填料粒徑的減小而減小。
電話
微信掃一掃